
A Generic Deep Architecture for Single Image Reflection Removal
and Image Smoothing

Qingnan Fan∗1 Jiaolong Yang2 Gang Hua2 Baoquan Chen1,3 David Wipf2
1Shandong University 2Microsoft Research 3Shenzhen Research Institute, Shandong University

fqnchina@gmail.com, {jiaoyan,davidwip,ganghua}@microsoft.com, baoquan@sdu.edu.cn

Abstract

This paper proposes a deep neural network structure that
exploits edge information in addressing representative low-
level vision tasks such as layer separation and image filter-
ing. Unlike most other deep learning strategies applied in
this context, our approach tackles these challenging prob-
lems by estimating edges and reconstructing images using
only cascaded convolutional layers arranged such that no
handcrafted or application-specific image-processing com-
ponents are required. We apply the resulting transferrable
pipeline to two different problem domains that are both sen-
sitive to edges, namely, single image reflection removal and
image smoothing. For the former, using a mild reflection
smoothness assumption and a novel synthetic data gener-
ation method that acts as a type of weak supervision, our
network is able to solve much more difficult reflection cases
that cannot be handled by previous methods. For the latter,
we also exceed the state-of-the-art quantitative and quali-
tative results by wide margins. In all cases, the proposed
framework is simple, fast, and easy to transfer across dis-
parate domains.

1. Introduction
Inspired by the tremendous success of deep learning for

large-scale visual recognition tasks like ILSVRC [28, 20],
a variety of recent work has investigated deep neural net-
works for low-level computer vision tasks such as image de-
noising [27, 11], shadow removal [15], and image smooth-
ing [38, 24]. Given that edges represent an important cue
in addressing many of these problems, networks that can
replace computationally-expensive or otherwise inflexible
edge-aware filters naturally show promise.

For example, the underlying goal of image smoothing is
to extract sparse salient structures, like perceptually impor-
tant edges and contours, while minimizing the color differ-
ences in image regions with low amplitude. To approximate
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different edge-sensitive image smoothing filters which po-
tentially have slow runtimes [2, 6, 8, 26, 37, 39, 42, 43]
with deep networks, it has been proposed to first learn a
salient gradient/weight map and then subsequently filter im-
ages via simpler, weighted optimization procedures [38] or
iterative recursive processing techniques [24]. The above
approaches focus on solving a single/major problem using
a plain CNN model followed by more traditional, inflex-
ible operations inspired by fixed filtering methods. Con-
sequently, they are not fully extensible to implementing
broader image smoothing effects or other significantly dif-
ferent problems such as image layer separation.

In this latter regard, one typical case where gradient do-
main statistics are relevant is in dealing with image reflec-
tions, that are often at least partially out of focus, when pro-
vided with a single image. When taking a photo through
a glass window, the glare or reflection tends to distract the
eye from the scene behind the glass. Many attempts to mit-
igate these effects, such as using a polarizer [19, 31], drap-
ing a large piece of black cloth over the lens and the glass
to block ambient light from behind, or changing positions
[22, 40, 41], are simply infeasible in many practical situa-
tions. Moreover, when taking photographs in airplane, mu-
seum, aquarium, or related environments, there is no other
recourse but to shoot through the window. Consequently, it
is common for photographers to simply widen the aperture
of the camera and blur out the reflections.

To address this reflection removal problem from a com-
putational perspective, traditional imaging models assume
that the captured image I is a linear combination of a back-
ground layer B and a reflection layer R, i.e., I = B + R.
Obviously this is an ill-posed problem as there exist infinite
feasible solutions, and hence most reflection removal algo-
rithms require multiple input images [7, 30, 1, 19, 12, 22,
40, 41] or manual user interactions [21] to label reflection-
and background-layer gradients, thus condensing the space
of candidate solutions. However, one exploitable property
in the reflection removal problem is that the gradients or
perceptual structures of the two layers exhibit different dis-
tributions, since reflections often display a greater degree
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of blurring. This then naturally leads us towards edge-
based solutions, with data-driven network variants consid-
ered herein.

In this paper, we present a Cascaded Edge and Image
Learning Network (CEILNet) that can be tailored to solve
different image processing tasks such as layer separation
(e.g., reflection removal) and image filtering (e.g., image
smoothing). We rely on an overriding generic structure that
is specialized in each instance via domain-specific edge in-
formation. The core framework operates in a very intu-
itive way. In brief, we separate the difficult task of directly
predicting an image into two subproblems: (i) predicting
the edge maps of the target images via a deeply supervised
sub-network, and then (ii) reconstructing the target images
by leveraging the predicted edge maps. These tasks are
learned end-to-end by cascading two similar simple CNNs,
and no hand-crafted modules are required. The edge map
represents any color difference between each pair of adja-
cent pixels for task-specific target images, instead of sparse
salient structures as in edge detection problems.

Of course, these objectives require ample training data to
be feasible in practice. For image smoothing, this is not es-
pecially problematic provided sufficient computational re-
sources are available for producing filter outputs across a
corpus of images. However, for many layer separation tasks
ground-truth instances are scarce. We therefore propose a
novel weakly supervised learning method for training our
reflection removal pipeline. This involves the use of images
synthetically corrupted via reflections that mimic the phys-
ical properties of those found in natural scenes.

Our contributions can be summarized as follows:
• We propose a new, generic Cascaded Edge and Image

Learning Network (CEILNet) that relies only on con-
volutional layers and is specifically designed to tackle
edge-sensitive image processing tasks without resort-
ing to any handcrafted, application-specific compo-
nents. This structure is fast, extensible, and easy to
reproduce, facilitating the seamless transfer to differ-
ent low-level vision problems.
• We are the first to solve the challenging layer-

separation problem of reflection removal from single
images using deep learning techniques. We also pro-
pose a novel weakly supervised learning strategy com-
bined with CEILNet.
• Beyond reflection removal, we demonstrated state-of-

the-art visual and numerical performance using CEIL-
Net on the image smoothing task, surpassing previous
methods by a wide margin.

2. Related Work
Reflection Removal: Reflection removal is fundamen-
tally an underdetermined problem and therefore requires

prior knowledge or additional information to achieve any
degree of success. Perhaps the most popular practical rem-
edy is to use multiple input images, such as flash/non-flash
image pairs [1], focus/defocus pairs [30], video sequences
where background and reflection exhibit different motions
[7, 34, 29, 9, 22, 33, 12, 40, 41], or those obtained through
a polarizer at two or more orientations [19, 31, 29]. A few
ambitious approaches attempt single image reflection re-
moval, a far more difficult but practical scenario. In [21],
manual annotation is required to guide an optimization-
based layer separation. [32] compensates for the limited
information by exploiting ghost cues, but this approach is
not applicable beyond this somewhat specialized situation,
or in the majority of practical cases. [35] leverages a multi-
scale DoF computing strategy to separate reflection from
background.

In terms of automatic reflection removal from a single
image with minimal assumptions, the work most closely re-
lated to ours is [23]. This approach assumes the reflected
layer is relatively blurry compared to the background scene,
thus large gradients in it are strongly penalized in their opti-
mization. However, we observe that the reflection in many
real-world photographs, although indeed sometimes out of
focus or blurry, is nonetheless produced by bright lights and
often comprises the brightest portion of an image. The re-
gional gradients associated with these reflections can there-
fore be quite large, violating the assumption in [23]. In
this work, we synthesize a database of training samples that
better capture the background and reflection statistics, and
replace prior knowledge injected through explicit gradient
penalization or energy minimization with a particular deep
network to capitalize on this form of weak supervision. Em-
pirically we will later show that indeed significant improve-
ment is possible on real images.

Image Smoothing: Given the recent effectiveness of
parallel computation through GPUs, and the strong
learning capability of deep neural networks, replacing
computationally-expensive, optimization-based smoothing
filters with cheap neural modules has drawn a lot of at-
tention [38, 24]. However, because accurately capturing
smoothing effects with a fully convolutional deep network
can be challenging, [38] trains a shallow CNN on the gra-
dient domain followed by an optimized image reconstruc-
tion post-processing step with sensitive parameters tuned
for each different smoothing filter. From a somewhat dif-
ferent perspective, by treating spatially-variant recursive
networks as surrogates for a group of distinct filters, [24]
combines sparse salient structure prediction implemented
as CNN with image filtering in a hybrid neural network.

While significant differences exist, all of these prior
methods lean on traditional optimization or filtering tech-
niques at some point in their pipelines. Moreover, they are
mostly applied to image smoothing using filter- or effect-
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Figure 1. The proposed deep network architecture CEILNet. (a) The cascaded edge and image prediction pipeline. Two CNN networks,
E-CNN and I-CNN, are used for edge prediction and image reconstruction, respectively. I-CNN takes the output of E-CNN as input, giving
rise to an end-to-end and fully convolutional solution. (b) The detailed CNN structure shared by E-CNN and I-CNN.

dependent implementations without a universal, trainable
parametric structure. This can potentially contribute to de-
graded performance since no single optimization or filtering
strategy is likely to generalize to all different image smooth-
ing effects. In contrast, our method learns a generic, fully-
convolutional structure with no attendant postprocessing or
otherwise fixed, filter-inspired structures. Empirical exper-
iments demonstrate that this revised strategy outperforms
the best existing work by a wide margin.

3. Network Structure

Our network consists of two cascaded sub-networks: an
edge prediction network E-CNN and an image reconstruc-
tion network I-CNN. Figure 1 is a schematic description of
the architecture, which is unchanged for both the reflection
removal and image smoothing applications.

3.1. E-CNN: The Edge Prediction Network

When dealing with edge-sensitive image processing
tasks like reflection removal and image smoothing, edges-
related cues are naturally leveraged by many existing algo-
rithms [21, 22, 40, 10, 38]. Similarly, given a source image
Is, we apply a CNN to learn an edge map Et of the target
image It (i.e., the background layer for reflection removal
or the smoothed image for image smoothing). Note that the
goal is to predict the edges of the target image, not the input
image, and it is crucial not to confuse this procedure with
conventional edge detection [3, 36].

In this work, our edge map is not binary, as we empir-
ically found binary edge maps are less informative for the
subsequent image reconstruction. Instead, we designed a
simple but effective edge representation: the mean abso-
lute color difference between a center pixel and its four-
connected neighbors. Specifically, the edge map E of an

image I is computed by:

Ex,y =
1

4

∑
c

(
|Ix,y,c − Ix−1,y,c|+ |Ix,y,c − Ix+1,y,c|

+ |Ix,y,c − Ix,y−1,c|+ |Ix,y,c − Ix,y+1,c|
)

(1)

where x, y are the pixel coordinates and c refers to the chan-
nels in the RGB color space.

In order to ease the computation, we augment the source
image Is with its edge map Es as an additional channel for
input. The intuition behind is simple: either a reflection-
free background layer or an image smoothed via a filtering
process can be viewed as “simplified” versions of the orig-
inal source images, and their edge maps are roughly “at-
tenuated” versions of the source image edge maps. We ob-
served that such an augmentation can not only lead to bet-
ter results but also significantly accelerate the convergence
during training. In summary, E-CNN approximates the fol-
lowing function f :

Et = f(Is,Es) (2)

3.2. I-CNN: The Image Reconstruction Network

The second sub-network, I-CNN, is designed to recon-
struct the target image It by learning how to process the
input image Is given the target edge map Et predicted by
E-CNN. In other words, it approximates the following func-
tion g:

It = g(Is,Et) (3)

The input image and the target edge are combined to be
a 4-channel tensor as input, similar to E-CNN, hence their
shared use of the same overall structure. Additionally, in the
context of the edge-based image reconstruction step of im-
age smoothing tasks, the I-CNN serves as a multi-purpose,
data-driven substitution for traditional fixed filtering opera-
tions or optimization-based postprocessing structures.



1. Train E-CNN and I-CNN in parallel, with loss func-
tions of Eq. 4 and Eq. 5 respectively.

2. Jointly train (fine-tune) E-CNN and I-CNN end-to-
end, with loss in Eq. 6.

Figure 2. Our two-phase network training algorithm.

3.3. Details of CNN Layers

For simplicity, we employ the deep CNN structure
shown in Fig. 1 (b) for both E-CNN and I-CNN. The two
sub-nets only differ in the channel number of the final out-
put, i.e., 1 for E-CNN vs. 3 for I-CNN. In each case, we
employ 32 convolutional layers with the same 3×3 kernel
size (except for the third-to-last layer; see below). The in-
termediate 30 convolutional layers all have 64-dimensional
input and output feature maps. The first 31 layers are fol-
lowed by batch normalization (BN) and ReLU. To ensure
better contextual information, we enlarge the receptive field
by downsampling the internal feature map to half size and
then upsampling it back by changing the stride of the third
convolution layer to 2 and third-to-last convolution layer to
deconvolution with stride 2 and kernel size 4×4. In this
way, the receptive field is effectively enlarged without los-
ing too much image detail, and meanwhile the computation
cost is halved. For better performance and faster conver-
gence, we implement the middle 26 convolution layers as
13 residual units [14] similar to [5].

Finally, to resolve the color attenuation issue [16, 17] ob-
served in deep networks, we slightly magnify the predicted
image It via sc , argminsc ‖Isc−sc ·Itc‖22 and Itc ← sc ·Itc.
This global color correction is implemented as a parameter-
free layer after I-CNN. Its computational cost is negligible.

4. Network Training
This section first presents our training pipeline, that ap-

plies independently of the data source. Later we describe
application-specific means of generating training samples.

4.1. Training Details

We employ a two-phase network training algorithm
shown in Fig. 2. Specifically, we first train the sub-networks
separately with ground-truth images and their edge maps
to ensure the best individual performances. We then fine-
tune the entire network end-to-end, granting the two sub-
nets more opportunity to cooperate accordingly.

The sub-nets are trained by minimizing the mean
squared errors (MSE) of their predictions. Let the symbol ∗
denote ground truth, the loss for edge prediction is

lE(θ) = ||Et −Et∗||22. (4)

For image prediction, we minimize not only the color MSE

but also the discrepancy of gradients:

lI(θ) = α ||It − It∗||22
+β (||∇xIt −∇xIt∗||1 + ||∇yIt −∇yIt∗||1).

(5)

The gradient discrepancy cost, though seemingly redun-
dant, helps to prevent the deep convolutional network from
generating blurry images [25]. In the joint training phase,
we train the entire network by minimizing the loss:

l(θ) = lI(θ) + γ lE(θ). (6)

For all experiments across reflection removal and image
smoothing, the loss coefficients are empirically set as α=
0.2, β=γ=0.4 (other selections produce similar results).

We initialize the convolution weights using the approach
from [13] and train all networks using ADAM [18] with
mini-batch size fixed at 1. When training the two sub-nets
separately, the learning rate is set to 0.01 over the initial
iterations, e.g., 40 and 25 epochs for reflection and imaging
smoothing tasks respectively. The entire network is then
fine-tuned with the learning rate reduced to 0.001.

4.2. Training Data Generation

Reflection Image Synthesis: Real images with ground
truth background layers are difficult to obtain. To gener-
ate enough training data, simply mixing two images with
different coefficients (such as 0.8 for background and 0.2
for reflection) seems to be a straightforward and plausible
compromise. Indeed, this strategy has been widely used in
previous works [34, 29, 12, 23, 41] for analysis and quanti-
tative evaluation. However, we found that networks trained
on such images generalize poorly to real photographs. We
therefore propose a novel synthesis method to better ap-
proximate real-world reflection.

As previously mentioned, we assume that the reflection
is somewhat blurry relative to the background layer, which
tends to be more sharp and clear. This is a valid assump-
tion for many cases, as the camera is usually focused on
the background target. Moreover, a photographer can easily
widen the camera’s aperture and blur out the reflections. A
similar assumption is used by [23].

We expand on this assumption using a simple comple-
mentary observation. First, according to the Fresnel equa-
tion, we know that when incident light travels across media
with different refractive indices (e.g., glass and air) in front
of some scene of interest, a portion of that light will be re-
flected back to the image plane. However, the actual vis-
ibility of this reflected light to the human eye or a camera
depends on the relative intensity of light transmitted from
the background scene. Therefore we may expect that only
portions of the background layer transmitting modest light
will be appreciably obstructed via a reflection layer, even if
the latter is uniformly present across a scene. And yet in re-
gions where reflections are apparent, their intensity can still



Randomly pick two natural images normalized to [0, 1]
as background B and reflection R respectively, then:

1. R̃← gauss blurσ(R) with σ ∼ U(2, 5)
2. I← B+ R̃

3. m←mean({I(x, c) | I(x, c)>1,∀x,∀c=1,2,3})
4. R̃(x, c)←R̃(x, c)−γ · (m−1),∀x,∀c; γ set as 1.3
5. R̃← clip[0,1](R̃)

6. I← clip[0,1]
(
B+ R̃

)
Output I as the synthesized image with B as the
ground-truth background layer.

Figure 3. Reflection image data synthesis for weakly-supervised
learning. The subtraction and clipping operators allow for reflec-
tion intensities that can saturate and vanish in various regions.

be arbitrarily large (even if partially blurred) and so a purely
additive model with a weakly scaled reflection component
is not always physically plausible.

Based on the above observations, we develop a new
method summarized in Fig. 3 to synthesize images with re-
alistic background and reflection layers. One key difference
from naive image mixing is that the brightness overflow is-
sue is avoided not by scaling down the brightness, but by
subtracting an adaptively computed value followed by clip-
ping. In this way: (i) reflection-free regions are very likely
to appear which is consistent with natural images, (ii) strong
reflections can occur in other places, and (iii) the reflection
contrast is better maintained. Also note that we randomly
pick the σ of the Gaussian blur kernel between [2, 5], in
contrast to a fixed large value (σ = 5) tested in [23]. We
are interested in handling a wider range of real cases, in-
cluding cases with lesser blurry reflections. Figure 6 (top)
displays 4 synthetic images generated by our method, and
Fig. 5 shows a result comparison with naive image mixing.
For more comparisons and details regarding the synthesis
process, see the supplemental material.

Note that synthetically generated samples serve as a form
of weak supervision, as we ultimately deploy the trained
model on new real images containing natural reflections.

Generation of Smoothed Images: For image smoothing,
our network is trained to approximate the effect of exist-
ing filters. The training and testing data will simply be the
smoothed images generated by applying those filters to ex-
isting image databases. Various filters are tested in Sec. 5.

5. Experiments

This section first presents self-comparison experiments
to analyze the importance of proposed network architecture
design choices. We then evaluate the full CEILNet against
the state-of-the-art algorithms on the single-image reflec-
tion removal and image smoothing tasks.

Table 1. Result comparison for the image smoothing task (learn-
ing an L0 filter [37]). CEILNet outperformed Domain Transform
(DT) [10] and simple I-CNNs without E-CNN by large margins.

MSE PSNR SSIM

DT + input image edge 124.41 27.38 0.806
DT + pred. edge by E-CNN 51.26 31.17 0.964
DT + GT edge 45.67 31.66 0.971
I-CNN only 37.79 32.58 0.969
I-CNN only (64 layers) 31.86 33.33 0.973
I-CNN with input edge (64 layers) 22.50 34.86 0.979
CEILNet 13.34 37.10 0.989

5.1. Network Analysis

For simplicity, our analysis will be mainly based on the
representative results of approximating L0 smoothing [37].
These results were obtained on 100 PASCAL VOC test im-
ages (refer to Sec. 5.3 for training and testing details).

Is the target edge map from E-CNN helpful? To ver-
ify the importance of the target edge map for image recon-
struction, we removed E-CNN and trained a simple I-CNN
model without the predicted target edge or replacing the
predicted target edge with the input image edge. Table 1
shows that I-CNN with predicted edge (i.e., our CEILNet)
outperformed I-CNN alone and I-CNN with input edge by
significant margins, demonstrating the importance of target
edge prediction. A visual comparison is shown in Fig. 4.

Similar results were obtained for reflection removal: the
predicted background edges were found to be helpful for
layer separation. Figure 5 shows a typical example.

Does simply stacking more layers in I-CNN suffice?
Ideally, with enough depth, one may expect the network to
handle target edge prediction implicitly without the need
for an explicit E-CNN. We tried training a simple I-CNN
with more convolutional layers. and found that the per-
formance gets saturated quickly after more than 50 layers
(a detailed figure is deferred to the supplementary mate-
rial). Our CEILNet, i.e., 32-layer E-CNN + 32-layer I-
CNN, achieved much better results than a 64-layer simple
I-CNN (as shown in Table 1) and a best-performing 70-layer
one (PSNR 33.37 vs. 37.10 by CEILNet).

Is I-CNN better than a traditional method? To answer
this question, we replaced I-CNN with the Domain Trans-
form (DT) technique [10]. The predicted target edge map by
E-CNN and the input image are fed to DT to output smooth
images. We also tried the ground-truth target edge and the
input image edges. Table 1 shows that I-CNN with pre-
dicted edge from E-CNN (i.e., our CEILNet) outperformed
all DT results by large margins. A visual comparison is pre-
sented in Fig. 4.



Input image GT image CEILNet

I-CNN only DT + pred. edge DT + GT edge

Input edge GT edge Pred. edge by E-CNN

Figure 4. Qualitative comparison for the image smoothing task
(learning an L0 filter [37]). Our CEILNet generates a more satis-
factory result than a simple I-CNN without E-CNN and than Do-
main Transform [10]. Best viewed on screen with zoom.

Input image Input edge Pred. edge by E-CNN

CEILNet (naive data) I-CNN only CEILNet

Figure 5. Qualitative reflection removal results on a real image.
Our CEILNet removes more reflection and generates a clearer
background image than a simple I-CNN without E-CNN, and than
CEILNet trained with a naive image mixing strategy for data gen-
eration. Best viewed on screen with zoom.

For reflection removal, we also tried applying the layer
separation algorithm in [22] with our predicted edges as in-
put, but no satisfactory results were obtained.1

5.2. Reflection Removal

Training Data: We applied the method described in
Sec. 4.2 to synthesize training data for the reflection re-
moval task to accommodate our weakly-supervised learning
pipeline. We used 17K natural images from the PASCAL
VOC dataset [4] for the synthesis. These images were col-

1[22] utilizes multiple images to identify background edges, which are
used as prior to guide layer septation. Their septation algorithm did not
work well with our edge maps as it assumes non-blurry reflections and
requires binary edge maps.

Table 2. Quantitative comparison of our method with Li and
Brown [23] on 100 synthetic images with reflection.

PSNR SSIM

[23] Ours [23] Ours

15.50 18.55 0.786 0.857

lected from Flickr, and represent a wide range of viewing
conditions. Two natural images were used to generate one
synthetic image containing a background layer and a reflec-
tion layer, resulting in 8.5K synthetic images in total. We
split these images into a training set of 7,643 images and a
test set with 850 images for quantitative comparison. The
training images are also cropped to 224×224. The algo-
rithm described in Fig. 2 was then applied, and we did not
observe over-fitting in any of the training sub-tasks.

Method Comparison: We tested our CEILNet against
the state-of-the-art, single-image approach from [23]. For
a quantitative comparison, we randomly selected 100 im-
ages in our test dataset, and evaluate the PSNR and SSIM
metrics for the predicted B from both algorithms. The de-
fault parameters of [23] were used for evaluation. Table 2
shows that CEILNet significantly outperformed [23].

Figure 6 presents some qualitative results of our method
compared against [23] on both synthetic and real images.
The reflection image estimates are computed via R = I−B.
We tuned the parameters of [23] for each image to get the
best visual result. It can be seen that [23] tends to generate
a blurry reflection layer with brightness covering the whole
image. It largely failed to remove less blurry, high contrast
or partially present reflections. This is because [23] em-
ploys strong priors to penalize abrupt color transitions in R
which, however, may be common in real cases. In contrast,
our CEILNet is able to separate out the reflections reason-
ably well even if some of them are very bright and shiny,
and without jeopardizing the reflection-free regions. More
results and comparisons are deferred to the supplementary
material due to space limitation.

5.3. Image Smoothing

Training Data: For image smoothing, we used the 17K
natural images in the PASCAL VOC dataset as input, and
generated the filtered images using existing image smooth-
ing algorithms as the ground truth. These images are fed to
the network without cropping. We also randomly pick 100
images in the PASCAL VOC dataset for testing. We again
use the algorithm in Fig. 2 to train our CEILNet.

Method Comparison: We tested 8 image smoothing al-
gorithms for the network to approximate, including bilat-
eral filter (BLF) [26], iterative bilateral filter (IBLF) [8],
rolling guidance filter (RGF) [42], RTV texture smoothing
(RTV) [39], weighted least square smoothing (WLS) [6],
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Figure 6. Qualitative results of the single image reflection removal task on synthetic (top two rows) and real (bottom rows) images. Visually
inspected, our method can largely remove the reflection and produce reasonably good background images under various situations. The
method of Li and Brown [23] clearly underperformed. The last example is a partial failure case for our method due to the strong reflection
and weak transmitted light, but still the result is superior to [23]. Best viewed on screen with zoom.

Table 3. Quantitative comparison on the image smoothing tasks. We report the PSNR and SSIM metrics (larger is better) for 8 different
smoothing filters, and compare our method with Xu et al. [38]. Average values are computed with the preceding 7 cases.

BLF IBLF L0 RGF RTV WLS WMF L1 Ave.

PSNR [38] 35.02 32.97 31.66 32.49 35.68 33.92 29.62 32.62
Ours 43.76 38.18 37.10 42.05 44.03 41.39 39.70 36.99 40.40

SSIM [38] 0.976 0.962 0.966 0.950 0.974 0.963 0.960 0.964
Ours 0.995 0.989 0.989 0.991 0.994 0.994 0.989 0.982 0.990

Table 4. Running time comparison (in seconds). We compare the running time of our method against different traditional methods as well
as deep learning based methods of Xu et al. [38] and Liu et al. [24] at various resolutions.

BLF IBLF RGF L0 WMF RTV WLS L1 [38] [24] Ours

QVGA (320×240) 0.03 0.11 0.22 0.17 0.62 0.41 0.70 32.18 0.23 0.07 0.008
VGA (640×480) 0.12 0.40 0.73 0.66 2.18 1.80 3.34 212.07 0.76 0.14 0.009

720p (1280×720) 0.34 0.97 1.87 2.43 4.98 5.74 13.26 904.36 2.16 0.33 0.010
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Figure 7. Qualitative results on the image smoothing task. All the methods are trained to approximate L0 smoothing [37]. Top: Comparison
with Xu et al. [38]. Bottom: Comparison with Liu et al. [24] on the 256×256 image size. Our results are visually much closer to the
ground truth. The numbers show the PSNR values. Best viewed on screen with zoom.

Table 5. Comparison with Liu et al. [24] on image smoothing.

PSNR SSIM

[24] Ours [24] Ours

L0 32.26 36.62 0.958 0.986

RGF 38.64 40.80 0.986 0.989

WLS 38.29 40.27 0.983 0.992

WMF 33.29 37.75 0.951 0.986

Ave. 35.64 39.36 0.966 0.988

weighted median filter (WMF) [43], L0 smoothing [37] and
L1 smoothing [2].

Table 3 presents the quantitative results of our method
and [38] on the test set with 100 images. In can been seen
that our network achieved much better results than [38] for
all the 8 filters, on both the PSNR and SSIM metrics. We
also compare our results with [24], whose models for 4 fil-
ters are publicly available. Note that at the time of writing,
the latest code of [24] released by their authors cannot run
on arbitrary image size due to some implementation con-
straints, so we use their default size of 256×256. Table 5
shows that our method also significantly outperformed [24]
for all the 4 filtering algorithms.

Figure 7 presents two visual results of our method com-
pared to others. It can be observed that the method of [24]
generated obvious artifacts compared to the ground truth
for both two cases, while [38] produced some unwanted
color transitions in the right and bottom left regions of the
“bridge” image, resulting in a PSNR even lower than the

raw input image. In contrast, our results are visually more
close to the ground truth. More results and discussions can
be found in the supplementary material.

Running Time: We evaluate the running time of the eight
traditional smoothing algorithms and the three deep learn-
ing based methods with respect to different image sizes on
the same computer (NVIDA DGX-1). Table 4 shows that
our method2 runs faster than others in most of the cases. It
can approximate any traditional algorithm at about 100 fps
for 1280×720 images.

6. Conclusions and Future Work
We have proposed CEILNet, a generic deep architecture

for edge-sensitive image processing. We provided the first
learning-based solution to the challenging single image re-
flection removal problem using CEILNet and with the aid
of a novel reflection image synthesis method. We have also
significantly advanced the state-of-the-art in DNN-based
image smoothing. Our future work includes testing CEIL-
Net on more image processing tasks. Promising results for
image denosing and inpainting have been obtained in our
preliminary experiments.

Acknowledgement This work was partially supported by Na-
tional 973 Program (2015CB352501), Shenzhen Innovation Pro-
gram (JCYJ20150402105524053).

2The running time of our method reported in the previous ICCV version
included the time for the data generation process. Here we exclude that part
for a fair comparison.
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