
Go-ICP: Solving 3D Registration Efficiently and Globally Optimally

Jiaolong Yang 1,2, Hongdong Li 2, Yunde Jia 1

1Beijing Lab of Intelligent Information Technology, Beijing Institute of Technology
2Australian National University and NICTA Australia

{yangjiaolong,jiayunde}@bit.edu.cn, hongdong.li@anu.edu.au

Abstract

Registration is a fundamental task in computer vision.
The Iterative Closest Point (ICP) algorithm is one of the
widely-used methods for solving the registration problem.
Based on local iteration, ICP is however well-known to
suffer from local minima. Its performance critically relies
on the quality of initialization, and only local optimality is
guaranteed. This paper provides the very first globally op-
timal solution to Euclidean registration of two 3D pointsets
or two 3D surfaces under the L2 error. Our method is built
upon ICP, but combines it with a branch-and-bound (BnB)
scheme which searches the 3D motion space SE(3) effi-
ciently. By exploiting the special structure of the underlying
geometry, we derive novel upper and lower bounds for the
ICP error function. The integration of local ICP and global
BnB enables the new method to run efficiently in practice,
and its optimality is exactly guaranteed. We also discuss
extensions, addressing the issue of outlier robustness.

1. Introduction

The Iterative Closest Point (ICP) [5, 10, 35] is a well-
known algorithm for registering two point sets (in 2D or
3D) under Euclidean transformation. It has been suc-
cessfully applied to solving numerous real-world applica-
tions. The concept of ICP is simple and intuitive. It al-
ternates between estimating geometric transformation (ro-
tation and translation), and estimating the point-wise corre-
spondences. Partly due to its conceptual simplicity, as well
as its good performance in practice, ICP is one of the most
popular algorithms for registration, widely used in com-
puter vision, and beyond computer vision.

ICP is however also well-known for its suffering from
the issue of local minima, due to the local iterative pro-
cedure it adopts. Being an iterative method, ICP requires

a good initialization to start, without which the algorithm
may easily get trapped into local minima. If this situation
happens, the solution found by ICP may be far away from
the true (optimal) solution, leading to erroneous estimation.
More seriously, ICP itself has no way to tell whether or not
it has been trapped into a local minimum. Despite that this
drawback of local-minima is generally well-known, rela-
tively few papers have tackled this issue explicitly.

This paper is, to the best of our knowledge, the very first
that proposes a truly globally optimal solution to ICP type
Euclidean registration in 3D. It provides guaranteed opti-
mality without the need for a good initialization. In fact,
our new method always produces the exact and globally op-
timal solution (up to any desired accuracy), starting from
any initialization.

We call our new algorithm the Globally Optimal ICP (or
Go-ICP in short), because it largely resembles the computa-
tional structure of a standard ICP. It still relies on the search
of closest-points at each iteration. Moreover, a standard (lo-
cal) ICP is employed as a subroutine in our new algorithm.
By exploiting special structure of the underlying geometry
of SE(3), and with the help of local ICP, our Go-ICP algo-
rithm works rather efficiently. We have conducted extensive
tests on both synthetic data and real data; satisfactory results
(both in terms of theoretical optimality and computational
efficiency) are obtained for all tests.

Although Go-ICP is specifically designed for 3D Eu-
clidean registration since we take advantage of the geometry
of SE(3), the same techniques used in this paper may be in-
spiring for other cases as well (e.g. 2D or affine). Moreover,
confining to 3D should not be considered as a limitation, as
the 3D case is arguably the most useful case for registra-
tion. Our error metric used by Go-ICP follows strictly that
of ICP, namely, minimizing the L2 norm of the vector of
residuals. However, with small effort we can extend it to
other metrics such as the L1 norm, Least Median Squares
and other variants of ICP as well.
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2. Related Work
There has been a large volume of work published on ICP,

preventing us from giving a comprehensive list. Below we
only list a few most relevant works, that either aimed to
achieve optimal ICP or, more generally, addressed optimal-
ity in Euclidean registration. For other papers, the reader
is referred to a recent survey [8] or [31] and the references
therein.

To alleviate the local minima issue, previous work has at-
tempted to enlarge the basin of convergence by smoothing
out the objective function. Good performance has been ob-
served from Fitzgibbon’s LM-ICP [13] with robust kernels.
Probability density based techniques [18, 33, 27, 6] have
been used to model the points with Gaussian Mixture Mod-
els. Although improved robustness can be archived, the op-
timization procedures they adopted are still local search. Ef-
forts have been devoted to various heuristic stochastic op-
timizations, e.g. particle swarm optimization [34] and par-
ticle filtering [32], to help the registration jump out of lo-
cal minima. While these methods provide improved re-
sults, none of them maintains a deterministic and exact
optimality. Another class of methods adopt the heuris-
tic hypothesis-and-test idea. Examples include Hough
Transform, RANSAC and alignment-based object recog-
nition [17]. They work well in cluttered scenes (e.g. the
4PCS [1]), but the heuristic nature renders their results not
exactly optimal.

Registration methods that come with guaranteed opti-
mality were published in the past, though in a smaller num-
ber. For example, in 2D cases, branch-and-bound (BnB)
has been used for image pattern matching [7, 26, 29]. A
truncated L2 optimization for optimal geometric fitting is
recently addressed in [2]. However, most of these methods
are focused on the much simpler 2D case. Extending them
to 3D and SE(3) is a non-trivial task.

Li and Hartley [23] presented a rotation-search method
for 3D-3D registration. While being globally optimal,
their method makes unrealistic assumption such as the two
pointsets are of equal size and there is only pure rotation.
Branch-and-bound based Euclidean registration was inves-
tigated in Olsson et al. [28] for cases with known corre-
spondences. Enqvist et al. [12] converted the registration
problem to graph vertex cover and provided an optimal so-
lution. Applications of BnB to other vision geometry prob-
lems may be found in [22, 20].

Methods that make use of local invariant shape descrip-
tors (e.g. spin image [19], shape contexts [4], EGI [24])
are mostly heuristic and do not address the optimality is-
sue. One exception is the work of Gelfand et al. [14] in
which they proposed a globally optimal solution on top of
the local descriptors. Their idea is based on pair-wise dis-
tance consistency similar to [12]. Their optimization is ap-
plied to a relatively small number of local descriptors rather

than whole point clouds. In contrast, our method (to be
described in this paper) requires no local descriptors and
directly works on raw point clouds.

In this paper, we solve the 3D Euclidean registration
problem with global optimality guarantee. Our method is
related to the idea of SO(3) space search, as proposed in
[15, 16] and extended in e.g. [30, 3]. Most of the exist-
ing work along this line are based on the L∞-norm mini-
mization. For the case of L2-norm global optimization (e.g.
which is of interest to this paper), few results are known to
us.

3. The 3D Registration Problem
The standard ICP algorithm solves an L2-error mini-

mization problem, defined as follows.
Let two 3D pointsets X = {xi}, i = 1, ...,M and

Y = {yj}, j = 1, ..., N , where xi,yj ∈ R3 are point co-
ordinates, be the data pointset and model pointset respec-
tively. The aim is to estimate a rigid motion with rotation
R ∈ SO(3) and translation t ∈ R3, which minimizes the
following L2 error E:

E(R, t) =
M∑
i=1

ei(R, t)
2 =

M∑
i=1

‖Rxi + t− yj∗‖2 (1)

where ei(R, t) is the per-point residual error for xi. The
point yj∗ ∈ Y is denoted as the optimal correspondence of
xi, which in the context of ICP is the closest point to the
transformed xi in Y , i.e.

j∗ = argmin
j∈{1,..,N}

‖Rxi + t− yj‖. (2)

Given initial transformation R and t, the ICP algorithm
iteratively solves the above minimization via alternating be-
tween estimating the transformation in Eq. (1), and finding
the closest-point matches by Eq. (2). Due to such iterative
nature, ICP can only guarantee the convergence to a local
minimum.

4. Method Overview
In this work, we seek a truly globally-optimal solution

to 3D registration. We choose to use branch-and-bound to
solve the global optimization problem. Our method is sum-
marized as follows.

Use BnB to search the space of SE(3)
Whenever a better solution is found, call ICP (ini-
tialized at this solution) to refine (reduce) the objec-
tive function value. Use ICP’s result as an updated
upper bound to continue the above BnB search.

Until convergence.
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While the idea of using BnB is straightforward, it is non-
trivial to apply it for the case of rigid 3D registration. Al-
though existing BnB approaches work successfully for 2D
registration, extending the success to 3D has been much
challenging (see e.g., [16, 12, 23, 12]).

In order to apply BnB to 3D registration, one must first
answer the following questions: (i) how to parameterize and
branch the domain of 3D motions, (ii) how to efficiently find
an upper bound and lower bound.

Domain parametrization. Recall that our goal is to min-
imize the error E in Eq. (1) over the domain of all feasible
3D motions (i.e. the group of SE(3), defined by SE(3) =
SO(3) × R3). Each member of SE(3) can be minimally
parameterized by six parameters. The angle-axis represen-
tation is used in this paper to encode rotation, and we use
Rr to denote the rotation matrix with its angle-axis repre-
sentation to be r, i.e. Rr = exp([ r ]×) where exp(·) is the
matrix exponential and [ · ]× denotes the skew-symmetric
matrix representation. With this representation, the entire
space formed by all 3D rotations can be compactly repre-
sented as a solid radius-π ball in 3D. For ease of manipula-
tion, we use the minimum cube [−π, π]3 that encloses the
π-ball as the rotation domain. For the translation part, we
assume the optimal translation must lie within a bounded
cube [−ξ, ξ]3 which may be readily set by choosing a big
number as ξ. During BnB searches, initial cubes will be
subdivided into smaller sub-cubes Cr, Ct using the octree
data-structure and the process is repeated.

Bounding functions. We will present the derivation of
our new bounding functions (for the ICPL2-norm metric) in
the next section. Worth mentioning here is a unique feature
of the proposed BnB method. That is, we employ, as a sub-
routine, the conventional ICP algorithm in the BnB search
computation. This way, our method enjoys both the effi-
ciency provided by the local ICP search, and the optimality
guaranteed by the BnB search.

5. Derive New Bounding Functions
As for any BnB method, finding quality bounds is the key

to success. In our method, we need to find the bounds of the
particular type ofL2-norm error function used in ICP within
a domain Cr × Ct. Next, we will introduce the concept
of uncertainty radius as a mathematical preparation, then
derive our new bounds based on it.

5.1. Uncertainty radius

The intuition behind the concept of uncertainty radius
is: we want to examine, if we perturb a 3D rigid motion
with rotation r ∈ Cr and/or translation t ∈ Ct applied to a
3D point x, what the uncertainty region of the transformed
point will be. We aim to find a ball enclosing such an un-
certainty region. Our first result is as follows.

X

Y

Z

∠max

(a) Rotation uncertainty radius (b) Translation uncertainty radius

Figure 1. Uncertainty radii at a point. Left: rotation uncertainty
ball for Cr (in red) with center Rr0x (blue dot) and radius γr .
Right: translation uncertainty ball for Ct (in red) with center x+
t0 (blue dot) and radius γt. In both diagrams, the uncertainty balls
enclose the range of Rrx or x+ t (in green).

Result 1. (Rotation uncertainty radius) Given a 3D point
x. For a rotation cube Cr of half side-length σr with r0 as
the center, examining the maximum distance from Rrx to
Rr0x, we have

‖Rrx−Rr0x‖62 sin(min(
√
3σr/2, π/2))‖x‖

.
=γr. (3)

Proof. ‖Rrx−Rr0x‖
=2 sin(∠(Rrx,Rr0x)/2)‖x‖
62 sin(min(∠(Rr,Rr0)/2, π/2))‖x‖
62 sin(min(‖r− r0‖/2, π/2))‖x‖

62 sin(min(
√
3σr/2, π/2))‖x‖.

The first, and the second inequalities above, are based on
Lemma 1, Lemma 2 of paper [16], respectively. For con-
venience, we summarize both Lemmas in a (single) result
shown below.

Result 2. For any vector x, two rotations Rr and Rr0 , with
r and r0 as their angle-axis representations, then we have

∠(Rrx,Rr0x) 6 ∠(Rr,Rr0) 6 ‖r− r0‖. (4)

The second inequality in Eq. (4) means that, the angular
distance between two rotations in the underlying manifold,
is less than their vector distance in the angle-axis represen-
tation. We call γr the rotation uncertainty radius. Similarly,
we can derive a translation uncertainty radius γt, for a trans-
lation cube Ct with half side-length σt centered at t0:

‖(x+ t)− (x+ t0)‖ = ‖t− t0‖ 6
√
3σt

.
= γt. (5)

See Fig. 1 for illustrations of γr and γt. Both uncertainty
radii are used in deriving the lower bound for our method.
Note that γr is point-dependent, therefore γri refers to the
rotation uncertainty radius at xi.
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Figure 2. An illustrative figure for the obtained lower bound. It is
clear that a ≤ b ≤ c while a = ei and c = ei(Rr, t). See text for
details.

5.2. Bounding the L2 error

Given a 3D data point xi, a rotation cube Cr centered at
r0 and a translation cube Ct centered at t0, an upper bound
for the per-pixel residual error ei(R, t) within the cubes can
be trivially found as

ei
.
= ei(Rr0 , t0) > min

∀(r,t)∈(Cr×Ct)
ei(Rr, t). (6)

Finding a suitable lower bound for this L2 residual er-
ror appears to be a harder task, especially considering the
domain is in SE(3). However, below we will show how a
lower bound can be found, using the concept of uncertainty
radius.

The point yj∗ ∈ Y is closest to (Rrxi + t) as in Eq. (2).
Let yj∗0

be the closest point to Rr0xi + t0. Observe that,
∀(r, t) ∈ (Cr × Ct),

ei(Rr, t)

=‖Rrxi+t−yj∗‖
=‖(Rr0xi+t0−yj∗)+ (Rrxi−Rr0xi)+(t−t0)‖
>‖Rr0xi+t0−yj∗‖−(‖Rrxi−Rr0xi‖+‖t−t0‖) (7)
>‖Rr0xi+t0−yj∗‖−(γri+γt) (8)
>‖Rr0xi+t0−yj∗0

‖−(γri+γt) (9)
=ei(Rr0 , t0)−(γri+γt),

where Eq. (7) follows from the (reverse) triangle inequal-
ity, Eq. (8) is based on the uncertainty radii in Eq. (3) and
Eq. (5), and Eq. (9) is based on the closest-point definition.
Note that, yj∗ is not a fixed point, but changes dynamically
as a function of (r, t) as defined in Eq. (2). Such a closest-
point mechanism is consistent with standard ICP.

Now we have reached a lower bound of the per-point
residual for Cr × Ct as

ei
.
=max(ei(Rr0 , t0)−(γri+γt), 0)6 min

∀(r,t)∈(Cr×Ct)
ei(Rr, t).

(10)
The geometric explanation of this lower bound is as fol-

lows. Since yj∗0
is the closest point to the center Rr0xi+t0

of the uncertainty ball with radius γ = γri+γt, it is also the
closest point to (the surface of) the ball and ei is the closest

distance between pointset Y and the ball. Thus no matter
where the transformed data point Rrxi + t lies inside the
ball, its closest distance to pointset Y will be no less than
ei. See Fig. 2 for an illustration.

Summing up the squared upper bounds and lower bounds
of the per-point residuals in Eq. (6) and Eq. (10) for all the
M points, we get the important result below.

Result 3. (Bounds of the L2 error) For a 3D motion domain
Cr×Ct centered at (r0, t0) with uncertainty radii γris and
γt, the upper boundE and the lower boundE of the optimal
L2 registration error E∗ can be chosen as

E
.
=

M∑
i=1

ei
2 =

M∑
i=1

ei(Rr0 ,t0)
2, (11)

E
.
=

M∑
i=1

ei
2 =

M∑
i=1

max(ei(Rr0 ,t0)−(γri+γt), 0)2.(12)

This result gives both the upper bound and lower bound
of the registration error, based on which we developed our
Go-ICP algorithm.

6. The Go-ICP Algorithm
6.1. Nested BnBs

Instead of searching the 6D space of SE(3) with a
single BnB which would be less efficient, we propose to
use a nested BnB search structure. An outer BnB searches
the rotation space of SO(3), while solving the bounds
and corresponding optimal translation by calling an in-
ner translational BnB. The bounds for both BnB algo-
rithms can be readily derived according to Sec. 5.2 and
will be briefly described as follows. In the outer rota-
tion BnB, for a cube Cr the bounds of the registration er-
ror can be chosen as Er = min∀t∈Ct

∑
i ei(Rr0 , t)

2 and
Er = min∀t∈Ct

∑
i max(ei(Rr0 , t) − γri, 0)

2 where Ct

is the initial translation cube. To solve Er with the inner
translation BnB, the bounds for a translation cube Ct can
be chosen as Et =

∑
i max(ei(Rr0 , t0) − γri, 0)

2 and
Et =

∑
i max(ei(Rr0 , t0) − (γri + γt), 0)

2. By setting
all the rotation uncertainty radii γri to be zero in Et and Et

above, we get the translation BnB to solve Er.
A detailed description is given in Algorithm 1 (Go-

ICP – the Main Algorithm) and Algorithm 2 (the Trans-
lation BnB). The nested BnB structure can be clearly
seen: the outer BnB in Algorithm 1 calls the inner BnB
in Algorithm 2.

Search strategy and stop criterion. In both BnBs, we
perform best-first-search strategy. Specifically, each of the
BnBs maintains a priority queue Qr, Qt, respectively. The
priority of the cubes in the queue is opposite to their lower
bounds, which means that the BnBs always explore the cube
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Algorithm 1: Go-ICP – the Main Algorithm: BnB
search for optimal registration in SE(3)

Input: Data and model points; threshold ε; initial cubes Cr , Ct.
Output: Globally minimal error E∗ and corresponding r∗, t∗.

1 Put Cr into priority queue Qr . Set E∗ = +∞.
2 loop
3 Read out a cube with lowest lower-bound Er from Qr .
4 Quit the loop if E∗−Er<ε.
5 Divide the cube into 8 sub-cubes.
6 foreach sub-cube Cr do
7 Compute Er for Cr and corresponding optimal t by

calling Algorithm 2 with r0, zero uncertainty radius, E∗.
8 if Er < E∗ then
9 Run ICP with initialization of (r0, t).

10 Update E∗, r∗, and t∗ with the results of ICP.
11 end
12 Compute Er for Cr by calling Algorithm 2 with r0, γr

and E∗.
13 Discard Cr if Er > E∗; otherwise put it into Qr .
14 end
15 end

with smallest lower bound in the queue. Once the difference
between so-far-the-best error E∗ and the lower bound E of
current cube is less than a threshold ε, the BnB stops.

Proof of convergence. The convergence for both of the
algorithms is provable. All we need to do is to show that, as
the algorithm iterates, the gap between the lower bound and
the upper bound converges uniformly to zero. This is easy
to see, as when the side-lengths of all cubes asymptotically
diminish to zero, the gap between the two bounds, i.e. the
uncertainty radii in Eq. (3) and Eq. (5), will be zero too.

Initial error for inner BnB. Here we give some details
regarding the initial error setting in Line 1 of Algorithm 2.
To speed up the computation of inner BnB, we set the initial
E∗t to be E∗ without loss of globally optimal registration
based on the following insight. If Er =E∗t ≥E∗, then E∗

will not be updated. If Er = E∗t ≥ E∗, then Cr contains
no better solution. In other words, if the error E∗t returned
by the inner BnB is greater than or equal to so-far-the-best
error E∗ in the outer BnB, it makes no contribution.

6.2. Integration with local ICP

Lines 9-10 of Algorithm 1 describe our upper-bound re-
finement procedure based on a standard local ICP. This pro-
cedure is done as follows. Whenever the outer BnB finds
a cube Cr which has an upper-bound lower than the so-far-
the-best function value, it will then call the conventional
ICP to start over, from the center of Cr and corresponding
t∗ as the new initial transformation. This helps ICP jump
out of the previous local minima. Once ICP converges, it
will arrive at a new local minimum which has a lower func-

Algorithm 2: BnB search for optimal translation given
rotation

Input: Data and model points; threshold ε; initial cube Ct; rotation
r0; rotation uncertainty radii γr , so far the best error E∗.

Output: Minimal error E∗
t and corresponding t∗.

1 Put Ct into priority queue Qt. Set E∗
t = E∗.

2 loop
3 Read out a cube with lowest lower-bound Et from Qt.
4 Quit the loop if E∗

t −Et<ε.
5 Divide the cube into 8 sub-cubes.
6 foreach sub-cube Ct do
7 Compute Et for Ct with r0,t0 and γr .
8 if Et < E∗

t then
9 Update E∗

t = Et, t∗ = t0.
10 end
11 Compute Et for Ct with r0,t0,γr ,γt.
12 Discard Ct if Et > E∗

t ; otherwise put it into Qt.
13 end
14 end

ICP

ICP

ICP

BnB

BnB

Figure 3. Left: BnB and ICP collaboratively update the upper
bounds during the search process. Right: with the guidance of
BnB, ICP only explores un-discarded promising cubes with small
lower bounds marked up by BnB.

tion value. This new local minimum is used to update the
upper bound.

Figure 3 (left) illustrates the collaborative relationship
between ICP and BnB. Under the guidance of the global
BnB, the local ICP seems to have a strong “sense of direc-
tion”. Instead of exploring the domain blindly, ICP con-
verges into local minima one by one with each local mini-
mum having lower error than the previous one, and reaches
the global minimum in the end. Since ICP monotonically
decreases current-best errorE∗ (cf. [5]), all points (transfor-
mation parameter r, t) in its search path should have error
lower than E∗, which means that lower bounds of the cubes
containing these points should be lower than E∗. Thus the
search path of the local ICP is entirely confined to the un-
discarded, promising cubes with small lower bounds, as il-
lustrated in Fig. 3 (right).

This way, both the global BnB search and the local ICP
search are intimately integrated in our method. The for-
mer not only helps the latter to jump out of local minima,
but also provides a guidance for the latter’s next search; the
latter accelerates the former’s convergence by refining the
upper bound, hence improves the overall efficiency.
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Figure 4. Comparison of the registration error (Left) and rotation
error (Right) on random points, by our Go-ICP method, versus
ICP initialized with Identity rotation and zero translation. Ground-
truth rotation and translation lie randomly within ±100 degrees
and ±0.5 respectively.

7. Experiments

This section reports our experimental results of the Go-
ICP algorithm, on both synthetic data and real range sur-
faces. All our codes are implemented in C++, and tested
on a standard PC with Intel i7 3.4GHz CPU. To speed
up the closest-point computation one may use kd-tree or
Distance Transform (DT). Similar to [13], we use 3D Eu-
clidean DT with 300×300×300 grids. In all the experi-
ments reported below, we pre-normalized the pointsets such
that all the points are within the domain of [−1, 1]3 and
the initial transformation domain to explore is set to be
[−π, π]3 × [−0.5, 0.5]3. Except for the 3D object local-
ization experiment, we set the convergence threshold ε to
be 0.001∗M in all the tests. It is worth mentioning that,
thanks to the inner ICP, the convergence threshold can be
set reasonably large for BnB to converge fast. We organize
our experimental results below according to their purposes.

7.1. Optimality

The purpose of this first experiment is to verify the global
optimality of our new Go-ICP algorithm and compare that
with standard ICP. We repeat 100 tests on random points.
In each test, 100 model points are randomly drawn from
the uniform distribution in [−1, 1]3; rotation and transla-
tion are randomly drawn within ±100 degrees and ±0.5 re-
spectively and applied to the model points to generate data
points; zero mean Gaussian noise is added to the points; ICP
is initialized with Identity rotation and zero translation.

Figure 4 shows the final reported registration error and
rotation errors for the 100 runs. Note that our goal is to
minimize the L2 error while root-mean-square (RMS) error
is reported for better comprehension. It is clear that our Go-
ICP always outperforms the classic ICP, in terms of having
consistently lower residual error. Hence the optimality is
confirmed. The first row in Fig. 5 compares the registration
results of the first run. Visually inspected, our method yields
a more satisfactory registration too.

Figure 5. Visual comparison of registration results. Left: initial
pose. Middle: results by ICP initialized with Identity rotation and
zero translation. Right: results by our Go-ICP. (Better viewed in
color)

7.2. Running time

In this experiment, we use the Stanford bunny raw scan
data1 and a dense hand mesh2 shown in the last two rows
of Fig. 5 to test out the real-life efficiency. We test the run-
ning time of our method on different numbers of data points
(i.e. M ) by sub-sampling the original data, while the initial
poses are fixed.

As presented in Fig. 6, the running time of Go-ICP man-
ifests a linear trend, which is due to our linear convergence
threshold setting w.r.t number of data points, and the O(1)
closest-point distance retrieval from DT. Overall, the Go-
ICP algorithm is efficient. In our experiment, for example,
to match 1000 data points to about 30,000–40,000 model
points took about 30 seconds for bunny and 15 seconds for
the hand.

7.3. Convergence of bounds

To show the convergence of our method and demonstrate
the evolution of the bounds, we record the upper and lower
bound values of the outer BnB when registering the 1000
data points onto the model pointsets in the previous experi-
ment, and plot them as a function of time as shown in Fig. 7.
Note that, the global bounds are plotted. The global lower
bound, which is the smallest lower bound of the cubes in
the queue, is always close to zero because the globally op-

1http://graphics.stanford.edu/data/3Dscanrep/
2http://fastscan3d.com/download/samples/
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Figure 6. Typical execution time of our method on the bunny and
hand w.r.t. different numbers of data points (M ). Initial poses are
shown in the last two rows of Fig. 5.
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Figure 7. Typical convergence curves of the upper bounds and
lower bounds in the outer BnB of our method on bunny and hand
(M = 1000).

timal error is close to zero, which is true for the registration
problem. It can be seen that, BnB and ICP collaboratively
update the upper bound. ICP refines the better upper-bound
found by BnB with local search, and BnB guides ICP to
converge into multiple local minima with lower and lower
registration errors until the global minimum is reached.

7.4. Outlier handling

This experiment aims to test the performance of our
method under outliers. Since ICP is based on least-squares
fitting, it is not inherently robust to outliers. However, our
Go-ICP can be easily extended to using a robust error func-
tion. In this test, we use ICP with trimming [11] and the
same trimming strategy in BnB to handle outliers. The ex-
tended lower bound is described in Sec. 8.

Different numbers of outliers (10% and 20%) are added
into the Bunny data points, and we set the trimming per-
centage of our Go-ICP to be 20%. Figure 8 visually shows
the effectiveness of our trimmed Go-ICP in attaining the
optimum despite of the presence of the outliers.

7.5. 3D object localization

In this experiment, we show how our method may be
used for model-based 3D object detection, localization and
pose estimation, from a cluttered range scan (e.g. that ob-
tained by a Kinect, or a laser scanner). The RGB-D
database from [21] is used. Our goal is to register the points

(a) 10% outliers (b) 20% outliers

Figure 8. Tests of Go-ICP with trimming under outliers. (Better
viewed in color)

of a baseball cap to the point cloud of the scene as shown
in Fig. 9. Note that this is an extremely hard task, as there
are numerous local minima (with very low registration er-
ror) arising when the cap is nestled into the table, the wall,
etc. Neither visual information nor local descriptors were
used; the inputs were two point clouds only.

We sampled 100 points on the cap, and the convergence
threshold was set to be 0.00001∗M = 0.001. Our Go-ICP
successfully localized the cap in the scene with accurate
pose estimation within 40 seconds. The final RMS error
is 3.9mm.

8. Extensions
This section gives some ideas of how to extend our

method to various other variants of ICP. We focus on a few
examples, showing mainly how the new lower bound (for
Cr × Ct) may be derived for these extended cases.

LM-ICP with robust M-estimator kernel. With little
change, our algorithm can be directly adapted to Levenberg-
Marquardt ICP [13]. Even the DT data structure in LM-ICP
can be shared by the BnB. The new lower-bound function
is simply a robust kernelized version of our original lower
bound.

Trimmed ICP. In [11], only a subset P of the data points
with smallest closest-point distances is used for motion
computation, hence improving the robustness. The new
lower bound can be derived as E=

∑
i∈Q ei

2≤
∑

i∈Q e
2
i ≤∑

i∈P e
2
i =E, where Q is the trimmed subset of {ei} with

#Q=#P . In the same spirit, other variants of ICP such as
[9] or [25] can be similarly handled.

Lp-norm ICP. The same approach of the work may be
extended to other Lp-norm based ICP variants, such as the
robustness/sparseness promoting L1 norm. We leave this as
future work.

9. Closing Remarks
We have described a truly globally-optimal solution

to Euclidean registration in 3D, under the L2-norm error
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Figure 9. 3D object detection and localization experiment. From left to right: a labeled object and its depth image; an RGB image and a
depth image of the scene; registration result showing 3D points and 2D image points. The object is optimally localized, with an accurate
pose estimated. Note that no appearance information (e.g. feature descriptors) was used, and there exists a large number of local minima.

metric which is the very first solution of this kind. Our algo-
rithm is especially useful for practical scenarios where hav-
ing an exact optimal solution is highly desirable. Despite
being a branch-and-bound based method, it works rather
efficiently. For certain applications where real-time perfor-
mance is not critical, our algorithm can be readily applied,
or used as an optimality benchmark.
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